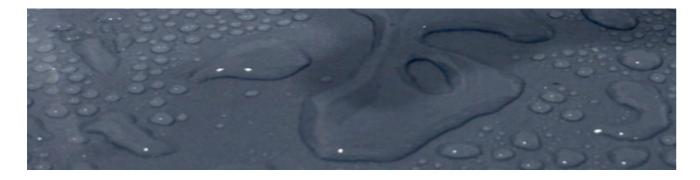
NANO-CERAMIC.COM INDUSTRIAL PROTECTIVE COATINGS

Military/Navy Permanent Coating Systems

What makes NANO-CERAMIC Permanent Coating System so durable?

NANO-CERAMIC permanent coating system is the latest generation of protective coating which transforms paint into a hard ceramic, providing superior scratch resistance and near-permanent protection for all exterior or interior surfaces.


NANO-CERAMIC permanent coating system is 600°F resistant and more than 4 times stronger than traditional acrylic based paint finishes, and is effectively preventing damage that would otherwise affect the appearance and integrity of the original surface.

Zero Maintenance for decades to come!

Our NANO-CERAMIC permanent coating is (non PFAS) rigorously tested by an independent testing laboratory according to the European standard for outdoor paints (EN 1504-2) please find the test report on our website.

Can NANO-CERAMIC Permanent Coating System be applied on any surface?

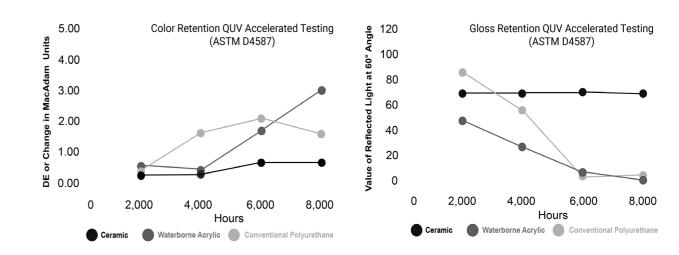
The NANO-CERAMIC permanent coating system can be applied directly or indirectly on all kinds of interior and /or exterior surfaces (absorbing and non-absorbing), such as concrete, steel, wood, acrylic, gypsum and many more.

Is NANO-CERAMIC Permanent Coating System self-cleaning?

NANO-CERAMIC permanent coating system provides a permanent hydrophobic surface that is self cleaning, easier to clean and stays cleaner longer as water and dirt can not penetrate the ceramic layer. NANO-CERAMIC permanent coating system is resistant to water vapor and water absorption.

Can our hydrophobic coatings increase acceleration time and speed while simultaneously reducing fuel consumption?

Yes, the superhydrophobic surface has a good drag reduction effect, and the maximum drag reduction rate is up to 23.4%.


In a new analysis from IPTEK ITS 2023 concerning Drag Reduction, the following conclusions have been obtained. It was found that there was an increase in acceleration due to drag reduction on the ship model treated with a superhydrophobic coating, showing a 31% improvement compared to the non-coated surface and a 27% improvement compared to a conventionally anti-fouling coated surface.

As published in the International Journal of Marine Engineering Innovation and Research. Click <a href="https://example.com/here-forthe-left-shape-sha

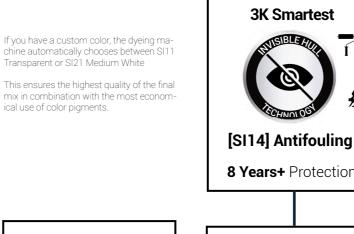
Other paints are simply not suitable for longterm harsh outdoor environments.

In order to avoid poorly maintained properties (concrete rot, chipped and weathered paint, etc) for the next decades, our Permanent Coating System is simply the best solution to keep the value of your investment in place.

Superior in Color & Gloss Retention

A special selection of high grade tinting chemicals computerized dispersed in a superior ceramic resin.

Conventional gelcoats are a mixture with Epoxy or Polyurethane resins, of which the quality of resin and pigments are the most important factor in the ultimate strength. Most have a lifespan of 15 years, with hardness, color and gloss retention (sun fading) and manual mixing towards consistent quality being the most common problems in keeping the desired object at an aesthetically pleasing level.


Quality Comparison of paints technologies

In case written in bold font it means existing shortcomings in quality.

04

Characteristics	Acrylic Latex walls ceilings	Acrylic walls floors	Epoxy floors	Polyurethane waterproofing	CERAMIC® all surfaces
Primer	Yes	Yes	Yes	Yes	No
Adhesion Strength	Poor	Poor	Poor	Poor	Excellent
Cross Cut Test	Poor	Poor	Good	Poor	Excellent
Abrasion Resistance	Poor	Poor	Average	Poor	Excellent
UV Radiation Resistance	Average	Average	Poor	Good	Excellent
Artificial Atmospheric Agents	Poor	Poor	Good	Good	Excellent
Colour Retention	Average	Average	Poor	Poor	Excellent
Gloss Retention	Poor	Poor	Poor	Poor	Excellent
Chemical Resistance	Good	Good	Good	Poor	Excellent
Severe Chemical Attack	Poor	Poor	Average	Poor	Excellent
Temperature Resistance	140°F	196°F	350°F	505°F	600°F
Thermal Shock Resistance	Good	Good	Poor	Good	Excellent
Carbon Dioxide Permeability	Poor	Poor	Good	Poor	Excellent
Permeability water vapour	Average	Average	Good	Average	Excellent
Water Absorption Rate	5-15%	1%	2%	3%	0%
Aging at 158°F	Poor	Poor	Good	Average	Excellent
Adhesion Strenght Pull-off	Poor	Average	Good	Poor	Excellent
Impact Resistance	Poor	Average	Good	Poor	Excellent
Anti-Graffiti	No	No	No	No	Yes
Anti-Termite (Wood)	No	No	No	No	Yes
Hydrophobic Self Cleaning	No	No	No	No	Yes
Easy to Clean	No	No	No	No	Yes
Total Solar Reflectance (TSR)	60 (white)	60 (white)	60 (white)	60 (white)	88 (white)
Expected Lifetime in Years	<7	<7	<5-15	<5-15	15-30+

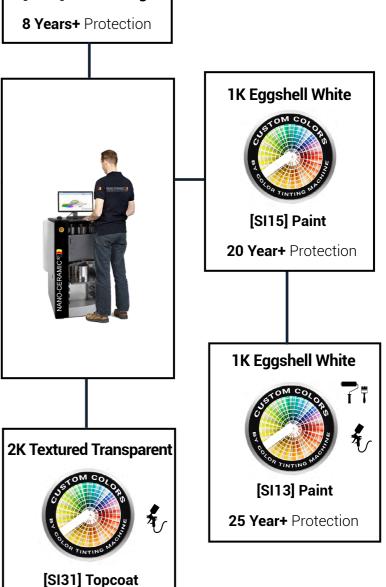
Ceramic Coating & Paint System

2K Transparent

[SI11/SI12] Topcoat

30 Year+ Protection

2K White


[AS201/AS202] Paint

25 Year+ Protection

Zinc Rich Primer

(Steel / aluminum surfaces)
Primer must pass
ASTM D3359
adhesion test 5.

A zinc rich primer needs to be used in case of problems with the substrate or in corrosive

30 Year+ Protection

S111/S112 2-Component (2K)

Ceramic Topcoat Transparent for glossy or matt surfaces

Product ID : SI112000 67 oz / 4.2 lbs Transparent Gloss

: SI122000 67 oz / 4.4 lbs Transparent Matte

: 3 layers $0.06 \, lbs/ft^2 - 0.96 \, oz/ft^2 = 3 \, mil \, / \, 70 \, ft^2$ Consumption : 2 layers $0.04 \text{ lbs/ft}^2 - 0.64 \text{ oz/ft}^2 = 2 \text{ mil} / 140 \text{ ft}^2$ Reachable area

:1 layer $0.02 \, lbs/ft^2 - 0.32 \, oz/ft^2 = 1 \, mil / 210 \, ft^2$

: H9 Hardness

Used on : Fiberglass, Aluminium, Steel Stone, Marble, Wood,

Ceramics, Fiberglass,

: Buildings, airports, offshore structures, bridges, **Application area**

tunnels, ships, tanks, verhicles, etc.

SI11/SI12 is an incredibly strong 2-component paint system which forms a durable matrix of molecular bonds (transformation to ceramic) resulting in permanent protection of the surface.

Three simple steps: Clean, Dry, and Apply.

- Easily repels water, dirt, dust, and pollutants.
- This coating has an outstanding hydrophobic effect.
- Restores damaged finishes and reduces cleaning intervals.
- Resistant to all kinds of chemicals and UV radiation.
- This coating does not absorb any water
- Superior anti-pollution and anti-corrosion properties.
- This coating can withstand temperatures of 600°F. suitable for making walls fire retardant and is most best solution to make rooftops waterproof

THE NEW GENERATION COATINGS

Near-permanent

How to use: Page 38

Anti-corrosion

Permanent hydrophobic

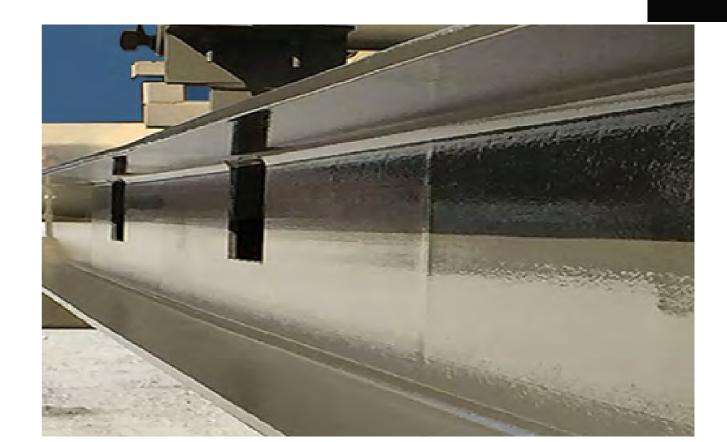
Anti-pollution

Anti-algae

UV protection

Self-cleaning Stays cleaner longer **Impact Resistance**

Thermal Shock-



Resistant

30"-2lbs

NANO-CERAMIC®

Permanent Hydrophobic - Self Cleaning

NANO-CERAMIC.COM NANO-CERAMIC® NANO-CERAMIC.COM THE NEW GENERATION COATINGS

S121/S122 2-Component

Ceramic Paint White

for glossy and satin surfaces

Product ID : SI212000 67 oz / 5.3 lbs

: SI222000 67 oz / 5.5 lbs

Consumption : 3 layers $0.044 \, lbs/ft^2 - 0.56 \, oz/ft^2 = 3 \, mil / 120 \, ft^2$ **Reachable area** : 2 layers $0.030 \, lbs/ft^2 - 0.37 \, oz/ft^2 = 2 \, mil / 160 \, ft^2$

:1 layer $0.014 \, \text{lbs/ft}^2 - 0.19 \, \text{oz/ft}^2 = 1 \, \text{mil} / 240 \, \text{ft}^2$

Hardness : H8

Used on : Gelcoat, fiberglass, steel, aluminium, plastics, wood, concrete

Application area: Buildings, airports, offshore structures, bridges,

tunnels, ships, tanks, verhicles, etc.

SI21/SI22 is an incredibly strong 2-component paint system which forms a durable matrix of molecular bonds (transformation to ceramic) resulting in permanent protection of the surface.

Three simple steps: Clean, Dry, and Apply.

- Easily repels water, dirt, dust, and pollutants.
- This coating has an outstanding hydrophobic effect.
- Restores damaged finishes and reduces cleaning intervals.
- Resistant to all kinds of chemicals and UV radiation.
- Superior anti-pollution and anti-corrosion properties.
- This coating can withstand temperatures of 600°F.
 suitable for making walls fire retardant and is most best solution to make rooftops waterproof and heat reflective.
- Superior alternative for Epoxi flooring or repaints .
- · Repaints of ceramic bathroom tiles.
- Zero absorbtion, waterproof.

and pollutants.

ding hydrophobic effect.

Cut maintenance costs

Anti-water spot Anti-corrossion

Permanent

hydrophobic

Easy to apply Repaintable

How to use: Page 38

Self-cleaning stays cleaner longer

Anti-scratch

Visibility

Protects your investment

Expected Life Duration up to 25 years+

Thermal Shock - Impact Resistent

SI31 2-Component (2K)

Textured Transparent Semi Gloss antislip - high inpact resistant

Product ID : SI312000 67 oz / 4.6 lbs

 $\begin{array}{lll} \textbf{Consumption} & : 3 \text{ layers } 0.050 \text{ lbs/ft}^2 - 0.76 \text{ oz/ ft}^2 = 3 \text{ mil / } 90 \text{ ft}^2 \\ \textbf{Reachable area} & : 2 \text{ layers } 0.033 \text{ lbs/ft}^2 - 0.51 \text{ oz/ ft}^2 = 2 \text{ mil / } 180 \text{ ft}^2 \\ \end{array}$

: 1 layer $0.017 \text{ lbs/ft}^2 - 0.25 \text{ oz/ ft}^2 = 1 \text{ mil} / 270 \text{ ft}^2$

Hardness : HS

Used on : Gelcoat, fiberglass, steel, aluminium,

: plastics, wood, virtually any surface.

Application area: Buildings, marine, offshore structures, bridges, etc

SI31 is a clear solvent-based ceramic coating, linked with a ceramic activator, available in semi-gloss and includes sprayable nano particles.

Known for its exceptional durability, this coating easily applies to any organic surface without needing a primer. Its textured design makes it perfect for anti-slip needs.

- Easily repels water, dirt, dust, and pollutants.
- This coating has an outstanding hydrophobic effect.
- Resistant to all kinds of chemicals and UV radiation.
- This coating can withstand temperatures of 600°F.
- · Zero absorbtion, waterproof, insulation and heat rejecting

Expecteted Life Duration up to 30 years+

How to use: Page 38

Easy to apply Repaintable

Cut maintenance

Anti-water spot Anti-corrossion

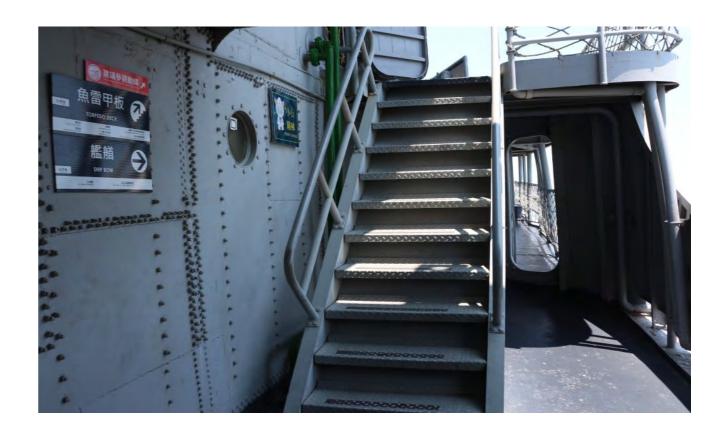
Permanent hydrophobic

Self-cleaning stays cleaner longer

Anti-scratch

Visibility safety

Protects your investment


Impact Resistance 30"-2lbs

Safes 10-20% on electricty

Anti Slip - Noice Reduction

S114 3-Component (3K)

Ceramic Smart Antifouling

Transparent black/red/blue/grey

Product ID : SI141000-BK-RD-BL-GR 32 oz / 2.4 lbs

:SI144000-BK-RD-BL-GR 1 gal / 9.5 lbs

Consumption : 2 layers $0.08 \text{ lbs/ft}^2 - 1.30 \text{ oz/ft}^2 = 8 \text{ mil} / 140 \text{ ft}^2$ **Reachable area** : 1 layer $0.04 \text{ lbs/ft}^2 - 0.65 \text{ oz/ft}^2 = 4 \text{ mil} / 280 \text{ ft}^2$

Hardness : H

Used for : Concrete Gelcoat, fiberglass, steel, aluminium,

plastics, wood, virtually any surface.

Application area: Offshore structures, bridges, ships, tanks, land walls

How to use: Page 38

SI14 is a super strong strong and sleek 3-component antifouling system which forms a durable matrix of molecular bonds (transformation to ceramic) resulting in a superior protection of the surface.

The coating tricks microorganisms into perceiving plain water in front of them, rather than a ship's hull; as a result they often make no attempt to settle on the hull.

Due to a combination of hydrophobic silicone and hydrophilic polymers they can not longer clearly recognize the surface, nor distinguish the hull unambiguously from sea water.

Three simple steps: Clean, Dry, and Apply.

- Easily releases algea
- Super smooth self-polishing surface
- Organic Cupper and Tin Non Biocidal releasel
- This coating has an outstanding hydrophobic effect.
- · Resistant to all kinds of chemicals and UV radiation.
- This coating can withstand temperatures of 600°F

Expected Life Duration up to 8 year+

Easy to apply Repaintable

Cut maintenance costs

Organic Cupper and Tin Non Biocidal

Super Sleek Surface Algea release <6knots

Hydrophobic Hydrophilic

Self-cleaning stays cleaner longer

Save fuel

Impact Resistance 30" - 2lbs

Thermal Shock-Resistant

Super Smooth - Saves Fuel

S113 2-Component (2K)

NANO-CERAMIC 11 AND CERAMIC 11 AND CERAMIC AINT AND CERAMIC 21 AND CERAMIC AINT AND CERAMIC AINT

How to use: Page 38

Ceramic Paint

for egg-shell surfaces

Product ID : SI132000 67 oz / 7.3 lbs White

 Consumption
 : 2 layers $0.050 lbs/ft^2 - 0.48 oz/ft^2 = 3.5 mil / 140 ft^2$

 Reachable area
 : 1 layer $0.025 lbs/ft^2 - 0.24 oz/ft^2 = 1.8 mil / 280 ft^2$

Hardness : H7

Used for : The system can be applied directly or indirectly

on all surfaces (porous and non-porous) such as concrete, steel, wood, acrylic, gypsum, painted or unpainted, walls, ceilings, indoors, or outdoor overhang. Buildings, airports, tuppels, hotels, private housing etc.

Application area : Buildings, airports, tunnels, hotels, private housing etc.

SI13 is an incredibly strong 2-component eggshell paint system which forms a durable matrix of molecular bonds (transformation to ceramic) resulting in permanent protection of the surface.

Three simple steps: Clean, Dry, and Apply.

- Easily repels water, dirt, dust, and pollutants.
- This coating has an outstanding hydrophobic effect.
- Restores damaged finishes and reduces cleaning intervals.

THE NEW GENERATION COATINGS

- Resistant to all kinds of chemicals and UV radiation.
- Superior anti-pollution and anti-corrosion properties.

Near-permanent

Anti-corrosion

Permanent hydrophobic

Anti-pollution

Anti-algae

UV protection

Self-cleaning Stays cleaner longer

Thermal Shock-Resistant

NANO-CERAMIC®

Easy to clean - Egg-shell

NANO-CERAMIC.COM

NANO-CERAMIC®

THE NEW GENERATION COATINGS

NANO-CERAMIC.COM

\$115 1-Component (1K)

Ceramic Paint White

for egg-shell surfaces

Product ID : SI152000 67 oz / 6.6 lbs White

Consumption : 2 layers $0.048 \text{ lbs/ft}^2 - 0.48 \text{ oz/ ft}^2 = 3.5 \text{ mil/}140 \text{ ft}^2$ **Reachable area** : 1 layer $0.024 \text{ lbs/ft}^2 - 0.24 \text{ oz/ ft}^2 = 1.8 \text{ mil/}280 \text{ ft}^2$

Viscosity : 20 Hardness : H6

Used for : The system can be applied directly or indirectly on

all surfaces (porous and non-porous) such as concrete, steel, wood, acrylic, gypsum, painted or unpainted surfaces, walls, ceilings, indoors, or outdoor overhang: Buildings, airports, tunnels, hotels, private housing etc.

Application area : Buildings, airports, tunnels, hotels, private housing etc.

SI15 is an incredibly strong 1-component eggshell paint system which forms a durable matrix of molecular bonds (transformation to ceramic) resulting in permanent protection of the surface.

Three simple steps: Clean, Dry, and Apply.

- Easily repels water, dirt, dust, and pollutants.
- This coating has an outstanding hydrophobic effect.
- · Restores damaged finishes and reduces cleaning intervals.
- Resistant to all kinds of chemicals and UV radiation.
- Superior anti-pollution and anti-corrosion properties.

NANO-CERAMIC®

Near-permanent

How to use: Page 38

Anti-corrosion

Permanent hydrophobic

Anti-pollution

Anti-algae

UV protection

Self-cleaning Stays cleaner longer

Thermal Shock-Resistant

Expected Life Duration up to 20 year+

Easy to clean - Egg-shell

Color mixing has never been so easy!!!

X- SMART is the modular version of the acclaimed dispenser series, extremely costeffective and easy to operate, with a low maintenance

This color mixer has a robust and tubeless design, built with a patented pump technology (to reduce waste) and identical features, making it a highly advanced dispenser, ideally suited to reduced capacity.

Prisma-RT is a cloud-based innovative mobile color application compatible with the X-SMART dispenser. It brings the best of wireless technology without the associated investment costs in hardware.

Customers do not have to provide computers and other accessories or set up servers, eliminating the need for complicated and time-consuming installation and configuration.

This smart Prisma-RT device helps to fix prices and taxes and can print labels via Wi-Fi.

X-SMART Stabilizer plates

16 High Grade Coloring chemicals

Titanium White

Masstone

844-0061 **1.05 gal**

Quinacridone Red Masstone

844-0451 **32 oz**

Scarlet Red

Masstone Tint 844-0526 **32 oz**

Lead Free Orange

Masstone

844-0982 **32 oz**

Trans Red Oxide

Masstone 844-1054 **32 oz**

Red Oxide

Masstone 844-1063 **32 oz**

Burnt Umber

844-1352 **32 oz**

Tint 844-1852 **32 oz**

Yellow Oxide Masstone

844-1863 **32 oz**

Lead Free Med Yellow

Masstone ___ 844-2555 **32 oz**

Masstone 844-2826 **32 oz**

Organic Yellow

Masstone 844-2852 **32 oz**

PHTHALO Green

844-5558 **32 oz**

Quinacridone Violet 844-9451 **32 oz**

Lamp Black 844-9955 **32 oz**

PHTHALO BLUE 844-7262 **32 oz**

NANO-CERAMIC® THE NEW GENERATION COATINGS

NANO-CERAMIC.COM

NANO-CERAMIC®

THE NEW GENERATION COATINGS

NANO-CERAMIC.COM

Color card

Traffic white

SI13 White Egg-Shell (Flat Finish) 15/25 (20/60°) SI41 Textured White Semi Gloss 41/69 (20/60°) 49/77 (20/60°) SI22 White Satin 33/59 (20/60°) Pure white

Mahogany braun

Other colors need minimal 220 lbs

ndustrial	Marine		Military		Antifouling
il11 Transparent Gloss 51/78 (20/60°)	SI12 Transparent Matte 11/21 (20/60°)	SI31 Textured Transparent Semi Gloss 41/69 (20/60°)			SI14 Color 31/41 (20/60°)
3/21 White Gloss 49/77 (20/60°)	SI41 Textured White Semi Gloss 41/69 (20/60°)	SI33 Textured Black Semi Gloss 41/69 (20/60°)			
Si22 White Satin 33/59 (20/60°)	SI42 Textured White Matte 11/21 (20/60°)				
	Original				
	Singma	RAL 3000			
Transparent	Cool white	Fire red	Transparent matte	Light stone	Transparent
RAL 1026	RAL 9010	RAL 3004	RAL 7031	RAL 6031	RAL 9005
cumious yellow	Pure white	Burgundy	Blue grey	Bronze green	Jet Black
RAL 3020	RAL 9001	RAL 7036	RAL 9005	RAL 6451	RAL 3001
Traffic red	Cream white	Platium	Jet black	Brunswick green	Signal Red
RAL 9005	RAL 5023	RAL 9005	RAL 6006	RAL 7015	RAL 5002
let black	Distant blue	Jet Black	NATO green	Dark sea grey	Ultra marine blue
RAL 1004	RAL 1023	RAL 5018	RAL 7024	RAL 5008	RAL 7004
Golden yellow [Cat]	Traffic yellow	Turqoise bleu	Graphite grey	[RAF] Blue grey	Signal Grey
RAL 6002	RAL 7001	RAL 6027	RAL 1015		
				_	
eaf green [J.D Deere]	Silver gray	Light green	Desert sand		
RAL 7035	RAL 1015	RAL 5000			
				= 0	.11
					Prisma-RT
ight grey	Light ivory	Violet blue	Camo beige		The state of the s
RAL 7011	RAL 9016				₩.
HAL (011	TAL 3010	RAL 5012			© © ♥ © ©
Dark grey	Pure white	Light blue	Dark grey camo		
RAL 7001	RAL 9001	RAL 5002			
_				Ì	
				`	
	Cream	Ultramarine blue	Dark brown camo		
RAL 8002	RAL 1001	RAL 5013	RAL 6022		and Constitution
					diementalia <u>Q</u>
					0000
Signal brown	Beige	Sapphire blue	Olive drap		
RAL 8025	RAL 1020	RAL 5005			
					•
Pale brown	Olive yellow	Signal blue	Very dark drap		

What is NANO-CERAMIC UVA Topcoat?

NANO-CERAMIC® UVA Topcoat is a revolutionary low-VOC, non-PFAS, self-leveling protective coating system that forms an ultra-hard, glass-like hydrophobic barrier—ideal for high-performance marine environments.

Specifically engineered for extreme durability and a sleek, high-gloss finish, UVA Topcoat delivers exceptional resistance to saltwater, intense UV exposure, biofouling, and harsh marine chemicals like hydrofluoric acid (HF), hydrochloric acid, and citric acid—all while remaining completely safe and compliant for onboard use (Food contact safe).

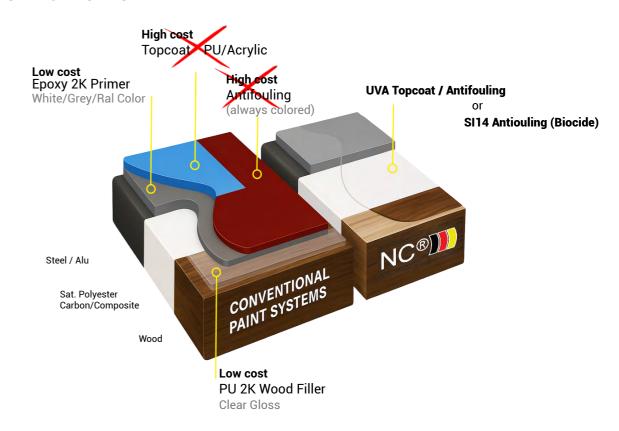
Powered by advanced nanotechnology, UVA Topcoat extends the lifespan of marine surfaces by protecting polyester, epoxy, polyurethane, and acrylic resins steel, aluminum, composites, and wood from corrosion, surface breakdown, and environmental wear. —making it an exceptionally versatile solution for virtually any surface.

Why UVA Topcoat is a Game-Changer in Marine Protection?

For decades, protective coatings like epoxy, polyurethane (PU), and acrylic have been the industry standard. However, they all share a critical weakness—UV degradation. Prolonged exposure to sunlight causes these coatings to yellow, crack, and deteriorate, leading to costly maintenance and premature failures.

Where can UVA Topcoat be applied in Marine use?

UVA Topcoat is highly versatile and suitable for a wide range of marine applications:


- Yachts & Boats Hulls, decks, topsides, and superstructures
- Speedboats UV protection and ultra-slick finish for high-performance watercraft
- Marine Infrastructure Docks, piers, pontoons, and submerged structures
- Ship Interiors Tables, countertops, cabins, walls, and decorative panels
- Commercial Vessels Outer hulls, ballast tanks, walkways, and engine rooms
- Antifouling Protection Ideal for vessels in constant motion or those stored on land

Compatible with both new builds and retrofits, UVA Topcoat adapts to various marine substrates and operating conditions with ease.

Can our hydrophobic coatings boost speed and cut fuel use?

Yes—our superhydrophobic sleek surface reduces drag by up to 23.4%, leading to 31% faster acceleration compared to uncoated surfaces and 27% faster than conventional antifouling coatings (Source: IPTEK ITS, 2023).

How it Works

Superior Performance at the Lowest Cost.

UVA Topcoat isn't just another coating—it's a next-generation solution that replaces complex and expensive multi-layer systems with a single, high-performance layer.

By applying directly over low-cost primers, UVA Topcoat eliminates the need for expensive finishing coats. Its smart chemistry and simplified process make traditional topcoat systems outdated by comparison.

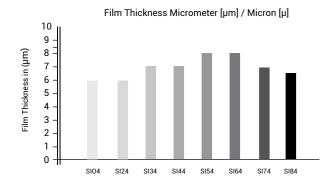
Whether for industrial, marine, infrastructure, or decorative use, UVA Topcoat simplifies your process and multiplies your value—proving that true performance doesn't have to come at a high price.

Freedom in Protection Years

Long-Lasting Protection, Layer by Layer

A single 6 µm (micron) layer applied using HVLP spray technology can provide up to 8 years of protection. Need more durability? Just add more layers—it's that simple.

Apply wet-on-wet: once the first coat flashes off (dry to the touch but still tacky), you can immediately apply the next. This method prevents trapped gases and creates a seamless, chemical-resistant film with hydrophobic properties—making surfaces easier to clean and maintain.

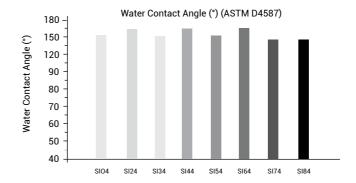

Coverage & Application Efficiency

UVA Topcoat is engineered for maximum efficiency with minimal material use—delivering high-performance protection at a fraction of the volume required by traditional coatings.

Recommended usage is approximately ±0.025 lbs/ft² per layer (by wipe or spray), resulting in a film thickness of around 6 microns, with one liter covering up to 800 ft².

Color Tinting Option for Marine Applications

For customized aesthetics, UVA Topcoat can be tinted using our colorants on page 32-33. These high-performance, solvent-free pigments provide long-lasting color stability and UV resistance—perfect for marine environments where both protection and appearance matter. Ideal for yachts, decks, interiors, or any visible surface requiring a durable, colored finish without compromising the coating's hydrophobic and chemical-resistant properties.



Quality Comparison of paints technologies

In case written in bold font it means existing shortcomings in quality.

Characteristics	Acrylic Latex walls ceilings	Acrylic walls floors	Epoxy floors	Polyurethane waterproofing	UVA Topc all surfaces
Primer	Yes	Yes	Yes	Yes	No
Adhesion Strength	Poor	Poor	Poor	Poor	Excellent
Cross Cut Test	Poor	Poor	Good	Poor	Excellent
Abrasion Resistance	Poor	Poor	Average	Poor	Excellent
UV Radiation Resistance	Average	Average	Poor	Good	Excellent
Artificial Atmospheric Agents	Poor	Poor	Good	Good	Excellent
Colour Retention	Average	Average	Poor	Poor	Excellent
Gloss Retention	Poor	Poor	Poor	Poor	Excellent
Chemical Resistance	Good	Good	Good	Poor	Excellent
Severe Chemical Attack	Poor	Poor	Average	Poor	Excellent
Temperature Resistance	140°F	196°F	350°F	505°F	550°F
Thermal Shock Resistance	Good	Good	Poor	Good	Excellent
Carbon Dioxide Permeability	Poor	Poor	Good	Poor	Excellent
Permeability water vapour	Average	Average	Good	Average	Excellent
Water Absorption Rate	5-15%	1%	2%	3%	0%
Aging at 70°C	Poor	Poor	Good	Average	Excellent
Adhesion Strenght Pull-off	Poor	Average	Good	Poor	Excellent
Impact Resistance	Poor	Average	Good	Poor	Excellent
Anti-Graffiti	No	No	No	No	Yes
Anti-Termite (Wood)	No	No	No	No	Yes
Hydrophobic Self Cleaning	No	No	No	No	Yes
Easy to Clean	No	No	No	No	Yes
Total Solar Reflectance (TSR)	60 (white)	60 (white)	60 (white)	60 (white)	88 (white)
Expected Lifetime in Years	<7	<7	<5-15	<5-15	8/16/24

SIO4 1-Component (1K)

H9 UVA Topcoat Transparent

for glossy surfaces

:1 layer +/- 0.025 lbs/ft² - 0.04 oz/ft² 6 micron = 800 ft²

Hardness/Cupping: H9 / Flexibility ISO 1520 > 0.83"

Used for : Fiberglass, steel, aluminium, plastics, woodApplication field : Marine, exteriors, antifouling, interiors

SIO4 is an incredibly strong 1-component high performance coating and paint system which forms a durable matrix of molecular bonds (transformation to ceramic) resulting in permanent protection of the surface.

PC SYSTEM

Three simple steps: Clean, Dry, and Apply.

- Easily repels water, dirt, dust, and pollutants
- On the ship's hull, for higher speed and lower fuel use.
- This coating is permanent hydrophobic
- Restores damaged finishes and reduces cleaning intervals.
- Resistant to all kinds of chemicals and UV radiation.
- Superior anti-pollution and anti-corrosion properties.
- This coating can withstand temperatures of 550°F
- Superb adhesion even on glass or stainless steel.
- Can be sprayed multilayered.

NANO-CERAMIC®

• Transparent, Opaque, solid-color or vibrant, transparent color finishes.

Save fuel Higher speeds

MaxHard LowFlex

00

How to use: Page 39

MaxHard

LowFlex

How does it look visually?

Near-permanent

Anti-corrosion

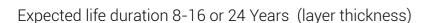
Permanent hydrophobic

Anti-pollution

Anti-algae

UV protection

Self-cleaning Stays cleaner longer


Impact Resistance

30" -2 lbs
Thermal Shock-

Thermal Shock-Resistant

Higher Speeds - Fuel Saving

SI24 1-Component (1K)

H9 UVA Topcoat Transparent

for matte surfaces

Product ID : SI241LUVA 32 oz / 2.13 lbs SI2405UVA 16 oz / 1.05 lbs Consumption : 3 layers +/- 0.075 lbs/ft² - 0.12 oz/ft² 18 micron = 200 ft² : 2 layers +/-0.050 lbs/ft² - 0.08 oz/ft² 12 micron = 400 ft² Reachable area : 1 layer +/-0.025 lbs/ft² - 0.04 oz/ft² 6 micron = 800 ft²

Hardness/Cupping: H9 / Flexibility ISO 1520 > 0.83"

Used for : Fiberglass, steel, aluminium, plastics, wood, vinyl canopy

Application field : Marine, exteriors, interiors camouflage.

SI24 is an incredibly strong 1-component high performance coating and paint system which forms a durable matrix of molecular bonds (transformation to ceramic) resulting in permanent protection of the surface.

MaxHard LowFlex How does it look visually?

(4)

How to use: Page 39

Three simple steps: Clean, Dry, and Apply.

- Easily repels water, dirt, dust, and pollutants.
- This coating is permanent hydrophobic
- Restores damaged finishes and reduces cleaning intervals.
- Resistant to all kinds of chemicals and UV radiation.
- Superior anti-pollution and anti-corrosion properties.
- This coating can withstand temperatures of 550°F
- Superb adhesion even on glass or stainless steel.
- · Can be sprayed multilayered.
- Transparent, Opaque, solid-color or vibrant, transparent color finishes.

Near-permanent

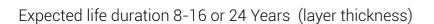
Anti-corrosion

Permanent hydrophobic

Anti-pollution

Anti-algae

UV protection


Self-cleaning Stays cleaner longer

Impact Resistance 30" - 2 lbs

Thermal Shock-Resistant

Anti Scratch - UV Resistant

NANO-CERAMIC® NANO-CERAMIC.COM NANO-CERAMIC® NANO-CERAMIC.COM THE NEW GENERATION COATINGS THE NEW GENERATION COATINGS

Marine-Grade Color Protection — Super Transparent

For boats where weight, speed, and durability matter, our advanced hybrid coating system offers a breakthrough: vibrant transparent tints or metallic finishes without sacrificing performance. By blending NANO-CERAMIC® Super Transparent Colorants into our UVA Topcoat, you get:

Ultra-thin coating (<15 microns) = minimal weight H9 surface hardness = max scratch resistance Hydrophobic & anti-fouling = fast cleaning, less drag UV & salt resistant = marine-grade longevity Clear or colored: keep visibility through glass or plexi Optional metallic effect for custom marine finishes

Perfect for:

Plexiglass hatches & windscreens Cabin glass, partitions, skylights Carbon fiber panels & consoles Stainless/aluminum trims & detailing

YELLOW A-N4G 100-ST

Masstone 279376 **3.2 oz**

BLUE A-BTG 100-ST Masstone 275536 3.2 oz

RED A-P2Y 100-ST

Masstone

GREEN A-GBX 100-ST Masstone 323291 3.2 oz

BLACK A-NB 100-ST Masstone 289518 3.2 oz

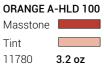
TR.OXIDE YELLOW A-2R 130 Masstone Tint 77492-1 3.2 oz

TRANSOXIDE RED A-G 130 Masstone 77491-1 **3.2 oz**

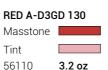
BLUE A-BTR 100-ST-Masstone Tint 290247 3.2 oz

Lightweight, Ultra-Hard, Built for Speed. Opaque Ral

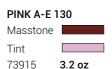
YELLOW A-F2G 100 Masstone 3.2 oz 11785

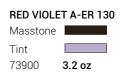


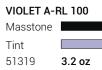
Masstone Tint 3.2 oz 11781

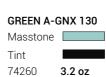


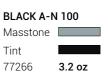
YELLOW A-HRD 100 Masstone ____ Tint 21108 3.2 oz



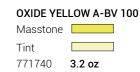


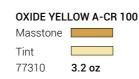


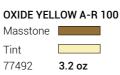


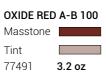


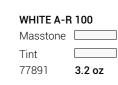
BLUE A-BG 100 Masstone 74160 3.2 oz











SX1 2-Component (2K)

Fast

Repaintable

Excellent

adhesion

Primer Epoxy Polyamide

heavy duty - anti-corrosion

Product ID : SIX11250-WH/GR 42 oz / 3.2 lbs SIX15000-WH/GR 1.32 gal / 12.8 lbs

Consumption : 2 layers +/-0.53 lbs/ft² -0.7 oz/ft² 80 micron = 50 ft² **Reachable area** : 1 layer $+/-0.26 \text{ lbs/ft}^2 - 0.40 \text{ z/ft}^2 \text{ 40 micron} = 100 \text{ ft}^2$

Hardness

: White, Grey or RAL (RAL Minimum Order 250 pcs 1.32 gal) Colors Used on : Concrete, Steel, Aluminium, Fiberglass and other organic

surfaces

Application area: Buildings, marine, airports, offshore structures, bridges

SIX1 is a solvent based epoxy polyamide primer. This primer is used for corrosion protection on concrete, stainless, galvanized, carbon and alloy steel, aluminum in corrosive conditions and has excellent adhesion to all organic substrates and to all of our ceramic topcoats. The primer can be applied at a relative humidity of 40-80% and can be painted over within 8 hours 85°F, 1 hours 140F°.

Fast

Repaintable

Excellent

adhesion

VOC Free

Primer Surfacer Acrylic Alkyd

smooth - surface modifier

: SIX21250-WH/GR 42 oz / 3.2 lbs SIX25000-WH/GR 1.32 gal / 12.8 lbs **Product ID Consumption** : 2 layers +/-0.44 lbs/ft² -0.7 oz/ft² 60 micron = 60 ft²

Reachable area : 1 layer +/-0.22 lbs/ft² -0.4 oz/ft² 30 micron = 120 ft²

Hardness : H3

Colors : White or Grey

Used on : Steel, aluminium, wood, fiberglass, and old paint systems.

Application area: Buildings, marine, airports, bridges

SIX2 High-quality 2K surfacer (two-component basecoat) for auto-refinish, marine, and industrial coating applications where a smooth surface is required. The primer has excellent adhesion to all organic substrates and to all of our ceramic topcoats. The primer can be applied at a relative humidity of 30-80% and can be painted over within 4 hours 85°F, 1 hours 140F°.

Heavy Duty Primer - Smooth Surfacer

NANO-CERAMIC® NANO-CERAMIC.COM THE NEW GENERATION COATINGS

NANO-CERAMIC® THE NEW GENERATION COATINGS NANO-CERAMIC.COM

SIX3 2-Component (2K)

Primer PU Wood Filler

surface modifier - absorbtion reducer

Product ID :SIX31500 51 oz / 3.3 lbs

Consumption : 2 layers +/-0.40 lbs/ft² -0.6 oz/ft² 60 micron = 80 ft² **Reachable area** : 1 layer +/-0.20 lbs/ft² -0.3 oz/ft² 30 micron = 120 ft²

Hardness : H4

Used on : Steel, Aluminium and other organic surfaces

Application area: Buildings, marine, airports, offshore structures, bridges

SIX3 is a solvent borne transparent wood filler. This primer is used as surface modification for, wood or natural stone to reduce capillary absorption and has an excellent adhesion to all organic substrates and towards one of our ceramic top coats. The primer can be applied at a relative humidity of 40-80%.

Fast Repaintable

Excellent adhesion

SIX4 1-Component (1K)

Primer Acrylic Waterbased

all surfaces modifier - stain killer

Product ID : SIX41000-WH/GR 32 oz / 2.65 lbs SIX44000-WH/GR 1 gal / 10.6 lbs

: 2 layers +/-0.53 lbs/ft² -0.7 oz/ft² 80 micron = 50 ft² onsumption **Reachable area** : 1 layer +/-0.26 lbs/ft² - 0.4 oz/ft² 40 micron = 100 ft²

Hardness : H3

Colors : White, Grey or RAL (RAL Minimum Order 250 pcs 1 gal) Used on : Concrete, wood, drywalls and old waterbased paints Application area: Buildings, walls and ceilings indoor or outdoor

Repaintable

Excellent adhesion

VOC Free

SIX4 Acrylic Water-Based Primer is a premium, all-purpose primer-sealer with excellent adhesion, stain-blocking, and hiding power. Ideal for both interior and exterior surfaces, it bonds to glossy surfaces without sanding, effectively blocks stains, and provides a smooth foundation for any solvent-based or water-based topcoat

Wood or Natural Stone - Filler

NANO-CERAMIC® NANO-CERAMIC.COM NANO-CERAMIC® NANO-CERAMIC.COM THE NEW GENERATION COATINGS THE NEW GENERATION COATINGS

SIX5 2-Component (2K)

Putty Polyester

ultra smooth - sandable

Product ID : SIX51000-WH/GR 2.2 lbs

Colors : White, Grey

Used on : Metal, wood, fiberglass, concrete, plastics

Application area : Buildings, marine, airports, offshore structures, bridges

private housing, etc.

SIX5 is a High quality 2 (two) component Epoxy base putty for auto-refinish, marine and industrial coating applications.

Repaintable

Excellent adhesion

for all types of our ceramic paint & coating

: SOLV0400 14 oz / 0.8 lbs SOLV2000 64 oz / 3.9 lbs SOLV5000 1.32 gal / 9.7 lbs **Product ID**

All our paints and coatings are ready to use, for certain spray applications, especially dark colors who require more than average color pigments, it may be necessary to use a little thinner solvent to achieve optimum flowability.

Retarder Accelerator

slow down flash time or speed up curing

: RETA0400 14 oz / 0.85 lbs ACCL0200 7 oz / 0.4 lbs Product ID

If your application needs a longer flash time (for example, in hot temperatures) to build up the layer with a second or third coat, you can add the RETA Retarder. If you want to speed up the curing process, you can add the ACCL Accelerator. It can reduce curing time by 30–70% compared to uncatalyzed systems, and full hardness can develop 1.5-2× faster.

Scan QR Code for TDS and SDS

(Test) Results

Videos Application

How to use our Permanent Coating System:

These products can be stored for up to 24 months (in a dry, temperature-stable dark environment)

Processing Temperature:

Ambient temperature: 41-86°F Avoid direct sunlight, Rain and /or high humidity.

IMPORTANT:

Before you use a NANO-CERAMIC product, please make sure you wear suitable protection gear. We always recommend using a paint suit, respirator mask and latex or nitrile gloves.

Outfit/Applicators

Fresh Air Respirator

Paint Suit

NANO-CERAMIC®

Nitrile gloves

Application information

The SI11/SI12/SI21/SI14/SI31 coatings can be applied directly or indirectly on all surfaces (porous and non-porous) such as concrete, steel, wood, glasfiber, acrylic, gypsum, painted or unpainted surfaces, indoors, or outdoors. The surface underneath will be superbly protected against erosion and corrosion and will stay cleaner longer. Cleaning becomes quicker, easier, and less expensive, as special cleaning agents are unnecessary.

Preparation

Make sure the surface is free from any contamination and dirt. A zinc rich primer can be used for ferrous metals that are exposed to coastal and marine environments or in case of problems with the substrate.

Warning the surface must be completely dry before application and must stay dry for 6 hours after application after application!

The 2-Component Permanent Coating System

Mix the can SI11B-SI12B-SI21B-SI31B with the can of SI11A-SI12A-SI21A-SI31A by pouring can B into can A, or measure exactly by NET WEIGHT in a ratio of 9:1

by using a scale and mix very well.

Mix SI14A2800 with SI14C0800 with by pouring can C into can A, or measure **exactly by NET WEIGHT** in a ratio of 7:2 by using a scale and mix very well, then add the entire content of SI14B0400 or measure exactly by NET WEIGHT in a ratio of 7:1 (compared to SI14A2800) by using a scale and mix very well. Carefully pour the mixed contents into a professional paint sprayer, and spray in thin layers until the surface reaches your desired thickness. Depending on the surface, material and structure, different application techniques can be used (such as paint rollers or brushes). Let the surface dry for 24 hours. It is touch-dry in 1 hours, after 4 hours, 85% cured, and the remaining 15% (transformation into ceramics) is fully cured after 7 days. Be aware that the mixed contents cannot be stored longer than 3 hours. If have orange peel you may wet /sand the surface wit P1500 and after P2000 and polish with One Step Polish till high shine. The surface can simply be maintained with a high pressure washer at 80 bar using our biologically degradable Reactivaing Shampoo. The surface can simply be maintained with a high pressure washer at 80 bar using our biologically degradable Reactivating Shampoo.

Tool cleaning and Thinner solvent

The individual components, as well as the mixing system of the paint sprayer, can be diluted and cleaned using our solvent. All of our paints and coatings are ready to use, for certain spray applications, especially dark colors which require more color pigment than average, it may be necessary to use our SOLV thinner solvent to achieve optima owability.

THE NEW GENERATION COATINGS

HVLP Paint Sprayer 1.3mm / 1.5mm / 1.8mm nozzle

How to use our UVA Coating System:

These products can be stored for up to 24 months (in a dry, temperature-stable dark environment)

Processing Temperature:

Ambient temperature: 41-86°F Avoid direct sunlight, Rain and /or high humidity.

IMPORTANT:

Before you use a NANO-CERAMIC product, please make sure you wear suitable protection gear. We always recommend using a paint suit, respirator mask and latex or nitrile gloves.

Outfit/Applicators:

Fresh Air Respirator

HVLP Paint Sprayer

Microfiber Roller Cotton Pads Paint Brush

Instructions for use:

Protect or Renew; Marble, Granite, Varnished wood, HPL, PVC or Vinyl laminate and Melamine. Creates an easy-to-clean, anti-scratch surface that is resistant to UV Discoloration, HF (Hydrofluoric Acid), Hydrochloric Acid, and Citric Acid.

Wipe Application; 1. Clean the surface 2. Sterilize the surface 3. Apply via the cotton pad an even layer 4. Let it cure.

Spray Application; Use an HVLP (High Volume Low Pressure) spray gun with 60-80% transfer efficiency. Fit the spray gun with a 1.0-1.3 mm fluid tip. Set air pressure to 20-30 psi.

Preparation Steps:

- 1. Stir the coating thoroughly for 30 seconds before use.
- 2. Prior to application, strain the mixed coating through a suitable paint filter (e.g., 190–250 μm) to ensure a clean, defect-free spray.
- 3. Wash and decontaminate the surface.
- 4. Wet sand / scuff using 1500-2000 grit sandpaper.
- 5. Mask off any parts not to be coated.
- 6. Ensure environmental conditions are below 65% humidity.
- 7. Perform a final clean using 100% acetone.
- 8. Wipe with a tack cloth to remove any dust or lint.

Application Procedure:

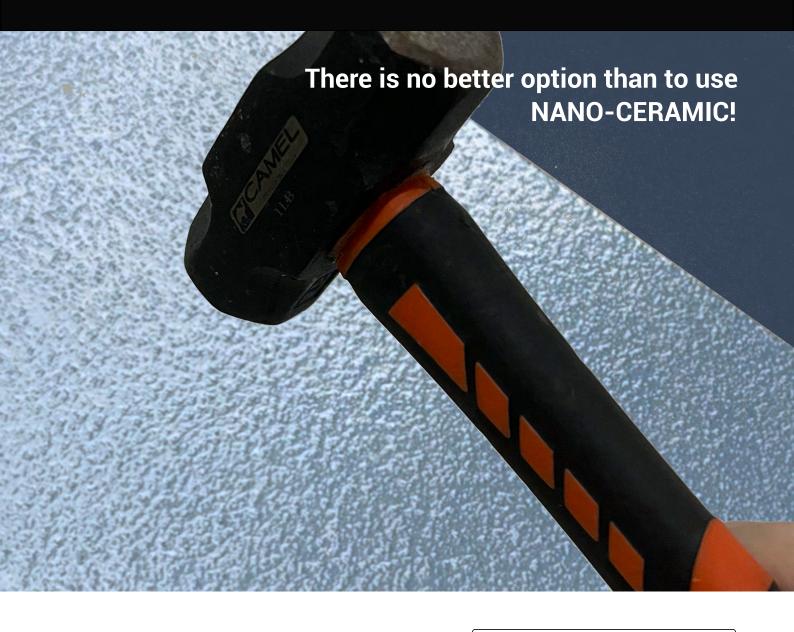
- 1. Spray a light, even coat. Allow a 5-minute flash-off time, or until outgassing stops.
- 2. Apply a second coat. Allow to flash off for at least 15 minutes, or until outgassing stops.
- 3. Unmask carefully before the coating fully cures.

Curing:

Tough Dry 5min, Hard Dry 2 Hours, 85% Cured 12 Hours, 100% Cured 5 Days

Refer to the TDS/SDS for more information.

1.3mm / 1.5mm / 1.8mm nozzle (6mm short nap)



(acrylic)

NANO-CERAMIC.COM NANO-CERAMIC®

THE NEW GENERATION COATINGS

Did you know that our
Permanent Coating System
repels water and dirt and
lasts 25 Years+?

Dealer